athena.metrics.heterogeneity.metrics module¶
Summary¶
Functions:
Computes the abundance of species on the observation or the sample level. |
|
Computes the Hill Numbers on the observation or the sample level |
|
Computes the quadratic entropy, taking relative abundance and similarity between observations into account. |
|
Computes the Renyi-Entropy. |
|
Computes the richness on the observation or the sample level |
|
Computes the Shannon Index on the observation or the sample level |
|
Computes the Simpson Index on the observation or the sample level |
Reference¶
-
richness
(so, spl, attr, *, local=True, key_added=None, graph_key='knn', inplace=True)[source]¶ Computes the richness on the observation or the sample level
- Parameters
so – SpatialOmics instance
spl (
str
) – Spl for which to compute the metricattr (
str
) – Categorical feature in SpatialOmics.obs to use for the groupinglocal – Whether to compute the metric on the observation or the sample level
key_added – Key added to either obs or spl depending on the choice of local
graph_key – Specifies the graph representation to use in so.G[spl] if local=True.
inplace – Whether to add the metric to the current SpatialOmics instance or to return a new one.
Examples
so = sh.dataset.imc() spl = so.spl.index[0] sh.metrics.richness(so, spl, 'meta_id', local=False) sh.metrics.richness(so, spl, 'meta_id', local=True)
- Return type
None
-
shannon
(so, spl, attr, *, local=True, key_added=None, graph_key='knn', base=2, inplace=True)[source]¶ Computes the Shannon Index on the observation or the sample level
- Parameters
so – SpatialOmics instance
spl (
str
) – Spl for which to compute the metricattr (
str
) – Categorical feature in SpatialOmics.obs to use for the groupinglocal – Whether to compute the metric on the observation or the sample level
key_added – Key added to either obs or spl depending on the choice of local
graph_key – Specifies the graph representation to use in so.G[spl] if local=True.
inplace – Whether to add the metric to the current SpatialOmics instance or to return a new one.
Examples
so = sh.dataset.imc() spl = so.spl.index[0] sh.metrics.shannon(so, spl, 'meta_id', local=False) sh.metrics.shannon(so, spl, 'meta_id', local=True)
- Return type
None
-
simpson
(so, spl, attr, *, local=True, key_added=None, graph_key='knn', inplace=True)[source]¶ Computes the Simpson Index on the observation or the sample level
- Parameters
so – SpatialOmics instance
spl (
str
) – Spl for which to compute the metricattr (
str
) – Categorical feature in SpatialOmics.obs to use for the groupinglocal – Whether to compute the metric on the observation or the sample level
key_added – Key added to either obs or spl depending on the choice of local
graph_key – Specifies the graph representation to use in so.G[spl] if local=True.
inplace – Whether to add the metric to the current SpatialOmics instance or to return a new one.
Examples
so = sh.dataset.imc() spl = so.spl.index[0] sh.metrics.simpson(so, spl, 'meta_id', local=False) sh.metrics.simpson(so, spl, 'meta_id', local=True)
- Return type
None
-
hill_number
(so, spl, attr, q, *, local=True, key_added=None, graph_key='knn', inplace=True)[source]¶ Computes the Hill Numbers on the observation or the sample level
- Parameters
so – SpatialOmics instance
spl (
str
) – Spl for which to compute the metricattr (
str
) – Categorical feature in SpatialOmics.obs to use for the groupingq (
float
) – The hill coefficient as defined here.local – Whether to compute the metric on the observation or the sample level
key_added – Key added to either obs or spl depending on the choice of local
graph_key – Specifies the graph representation to use in so.G[spl] if local=True.
inplace – Whether to add the metric to the current SpatialOmics instance or to return a new one.
Examples
so = sh.dataset.imc() spl = so.spl.index[0] sh.metrics.hill_number(so, spl, 'meta_id', q=2, local=False) sh.metrics.hill_number(so, spl, 'meta_id', q=2, local=True)
-
renyi_entropy
(so, spl, attr, q, *, local=True, key_added=None, graph_key='knn', base=2, inplace=True)[source]¶ Computes the Renyi-Entropy.
- Parameters
so – SpatialOmics instance
spl (
str
) – Spl for which to compute the metricattr (
str
) – Categorical feature in SpatialOmics.obs to use for the groupingq (
float
) – The renyi coefficient as defined herelocal – Whether to compute the metric on the observation or the sample level
key_added – Key added to either obs or spl depending on the choice of local
graph_key – Specifies the graph representation to use in so.G[spl] if local=True.
inplace – Whether to add the metric to the current SpatialOmics instance or to return a new one.
Examples
so = sh.dataset.imc() spl = so.spl.index[0] sh.metrics.renyi_entropy(so, spl, 'meta_id', q=2, local=False) sh.metrics.renyi_entropy(so, spl, 'meta_id', q=2, local=True)
-
quadratic_entropy
(so, spl, attr, *, metric='minkowski', metric_kwargs={}, scale=True, local=True, key_added=None, graph_key='knn', inplace=True)[source]¶ Computes the quadratic entropy, taking relative abundance and similarity between observations into account.
- Parameters
so – SpatialOmics instance
spl (
str
) – Spl for which to compute the metricattr (
str
) – Categorical feature in SpatialOmics.obs to use for the groupingmetric – metric used to compute distance of observations in the features space so.X[spl]
metric_kwargs – key word arguments for metric
scale (
bool
) – whether to scale features of observations to unit variance and 0 meanlocal – whether to compute the metric on the observation or the sample level
key_added – Key added to either obs or spl depending on the choice of local
graph_key – Specifies the graph representation to use in so.G[spl] if local=True.
inplace – Whether to add the metric to the current SpatialOmics instance or to return a new one.
Notes
The implementation computes an average feature vector for each group in attr based on all observations in the sample. Thus, if staining biases across samples exists this will directly distort this metric.
Examples
so = sh.dataset.imc() spl = so.spl.index[0] sh.metrics.quadratic_entropy(so, spl, 'meta_id', local=False) sh.metrics.quadratic_entropy(so, spl, 'meta_id', local=True)
-
abundance
(so, spl, attr, *, mode='proportion', key_added=None, graph_key='knn', local=False, inplace=True)[source]¶ Computes the abundance of species on the observation or the sample level.
- Parameters
so – SpatialOmics instance
spl (
str
) – Spl for which to compute the metricattr (
str
) – Categorical feature in SpatialOmics.obs to use for the groupinglocal – Whether to compute the metric on the observation or the sample level
key_added (
Optional
[str
]) – Key added to either uns[spl] or obs depending on the choice of localgraph_key – Specifies the graph representation to use in so.G[spl] if local=True.
inplace (
bool
) – Whether to add the metric to the current SpatialOmics instance or to return a new one.
Examples
so = sh.dataset.imc() spl = so.spl.index[0] sh.metrics.abundance(so, spl, 'meta_id', local=False) sh.metrics.abundance(so, spl, 'meta_id', local=True)