Overview

Methods

Abnormality([n_in, model, loss_fn, metrics, ...])

Estimator to quantify the abnormality of a cell's expression profile.

Individuality([n_neighbors, radius, ...])

Computes the individuality of each observation in the data set according to [Wagner2019].

Classifier([n_in, model, loss_fn, metrics, seed])

Classifier to classify a cell as epithelial or non-epithelial cell.

Datasets

breastCancerAtlas([force_load])

Flow cytometry dataset with annotated epithelial cells in ['celltype', 'celltype_class'] of ad.obs.

breastCancerAtlasRaw([force_load])

Raw flow cytometry dataset.

aml_and_healthy([force_load])

AML dataset with cells from healthy and AML patients.

aml_annotated_celltypes([force_load])

AML dataset with cells from healthy donors to show case classification.